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1. Nonstandard Analysis is develop on the same grounds that standard, real
analysis, e.g. classical logic, axioms for the real numbers field, axiom of choice,
and it is in this sense a part of classical mathematics. It is its basic structure,
i.e. non-Archimedean field of hyperreals, and techniques such as transfer
principle, S-continuity, hyperfinite sets and Loeb measures that make it non-
standard. Problems it deals with, those it shares with standard analysis,
make it to be still analysis rather than a new branch of mathematics.
In my talk I sketch a project in philosophy of mathematics (see [2], [3],[14])

that is designed to investigate the notions of a mathematical problem and a
mathematical technique. It is well-known that the same theorem, eg. triangle
proportionality theorem, Pythagoream theorem (see [10], VI. 2, VI.8 ), can be
proved with different techniques, eg. theory of proportion (see [10], Book V)
or the arithmetic of real numbers (see [4]). However, different techniques usu-
ally refer to different mathematical structures. Since there is some common
ground between standard and nonstandard analysis, I choose mathematical
analysis to develop a notion of a mathematical problem and a mathematical
technique. I discuss [8] to present a problem that is not comprehended in
any axiomatic reconstruction of mathematics. Next, I present a brand new
technique of nonstandard analysis, namely that of hyperfinite sets. Finally,
I address the question of a mathematical technique itself.
In the talk basic knowledge of nonstandard analysis is assumed (see point

5 below).

2. Mathematics over Metaphysics. In [8] Dedekind introduces „a real defini-
tion of the essence of continuity” that could form a sufficient basis for „a
rigorous exposition of differential calculus”. It is also believed that opposed
to continuity is discreteness (see [1],[13]). Nowadays Dedekind’s continuity
is just a characterization of a totally ordered set. In this context, discrete,



as opposed to continuous, means discrete order. Next to continuous order,
there are other notions of continuity in use in mathematics, e.g. Dedekind
complete ordered field or topological field (to mention only those that charac-
terize an algebraic field). Mathematics also provides a more general meaning
of discrete: in topology, discrete, as opposed to connected, could be rendered
as totally disconnected space.
The field of hyperreals is not Dedekind continuous, and it is also a to-

tally disconnected topological space, so, in a sense, it is a discrete space. In
spite of this, within the framework of Nonstadard Analysis basic theorems
of standard analysis can be proved. Comparing standard and nonstandard
analysis I show that beyond mathematical rules for defining numbers such
as Dedekind cut, Cauchy completeness, standard part theorem or hyperfinite
sum there is nothing like the linear continuum.

3. Finite-Infinite-Hyperfinite. In classical mathematics the set of natural
numbers N forms a standard measure of infinity: a set A is finite iff there
is a bijection between it a some natural number n, otherwise it is infini-
te. This Cantorian approach focuses on the cardinality of a set. However,
one can take into account the well-known properties of finite sets, namely:
(1) a subset of a finite set is finite, (2) a finite and totally ordered set has a gre-
atest and a least element, (3) if A,B are finite then A ∪B = A+B−A ∩B.
Hyperfinite sets, being either finite or denumerable in Cantor’s sense, sha-
re with standard finite sets (in a sense clarified below) these properties. I
present some arguments of Nonstandard Analysis that make use of these
properties and their standard analysis counterparts (eg. Riemann integral,
Lebesgue measure) that refer to the notion of limit and, in consequence, to
the axiom of continuity.

4.Mathematical techniques over logic. Philosophically motivated programs to
reconstruct analysis on different grounds than those provided by real ana-
lysis are based on a tacit assumption that there is some ground structure of
analysis, usually called real numbers (see [5],[11]). As a result they mimic ba-
sic real analysis concepts (eg. ordered field, sequence and limit, continuity of
a function) to develop but a new branch of mathematics. Since the field of ra-
tionals is a common ground between standard, constructivist (see [5], p. 42)
and intuitionist (see [11], p. 16) analysis I present the ordered field of rational
numbers just as a mathematical technique rather than a construction.
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5. Basic facts and definitions (see [6],[7],[9],[12]). Let (R,+, ·, 0, 1, <) be the
field of real numbers, F – a nonprincipal ultrafilter on N. The relation
defined by

(rn) ≡ (sn)↔df {n ∈ N : rn = sn} ∈ F

is an equivalence relation on the set RN. The set of hyperreals R∗ is the
quotient set R∗ =df RN/≡ .
Addition, multiplication and order of hyperreals are defined by

[(rn)]⊕ [(sn)] =df [(rn + sn)], [(rn)]⊗ [(sn)] =df [(rn · sn)],

[(rn)] ≺ [(sn)]↔df {n ∈ N : rn < sn} ∈ F .

The standard real number r is identified with equivalence class r∗ of the
constant sequence (r, r, ... ), i.e. r∗ =df [(r, r, ... )].
Theorem (R∗,⊕,⊗, 0∗, 1∗,≺) is a non-Archimedean, real closed field.
The set of infinitisimal hyperreals Ω is defined by

x ∈ Ω↔df ∀θ ∈ R+[ |x| ≺ θ∗ ].

We say that x is infinitely close to y, x ≈ y, iff x− y ∈ Ω.
The set of limited hyperreals O is defined by

x ∈ O ↔df ∃θ ∈ R+[ |x| ≺ θ∗ ].

Standard Part Theorem: ∀x ∈ O∃!r ∈ R[ r∗ ≈ x ].
The standard part of a limited hyperreal x is denoted by ox, i.e. ox = r.
The set of hypernaturals N∗ is defined by

[(nj)] ∈ N∗ ↔df {j ∈ N : nj ∈ N} ∈ F .

The set of infinite hypernaturals N∞ is defined by N∞ =df N∗ \ {n∗ : n ∈ N}.
Let (sn)n∈N be a sequence of reals. Then an extension of (sn)n∈N to a

hypersequence (s∗K)K∈N∗ is defined by

s∗K =df [(skj)] = [(sk1 , sk2 , ...)], where K = [(kj)] = [(k1, k2, ...)].

Basic Theorem Let (sn) be a sequence of real numbers, let a ∈ R. Then

lim
n→∞
sn = a↔ ∀K ∈ N∞[s∗K ≈ a∗].
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Let {Hn} be a sequence of subsets of R. An internal set [Hn] is a subset
of R∗ defined by

[(rn)] ∈ [Hn]↔df {n ∈ N : rn ∈ Hn} ∈ F .

When {n ∈ N : Hn is finite} ∈ F , then [Hn] is called hyperfinite. When
Hn = A, for all n, then the set [Hn] = [A,A, ... ] is denoted by A∗, thus
N∗ = [N,N, ... ], Z∗ = [Z,Z, ... ], and (a, b)∗ = [(a, b), (a, b), ... ], for a, b ∈ R.
Theorem: (1) Any internal set is finite or uncountable.
(2) An internal subset of a hyperfinite set is hyperfinite.
(3) Any hyperfinite set has a greatest and a least element.
(4) The union and intersection of any two hyperfinite sets F and G are
hyperfinite, with internal cardinality |F ∪G| = |F | ⊕ |G| − |F ∩G|.
Let fn be a sequnence of real functions such that fn : An 7→ R. An internal

function [fn] : [An] 7→ R∗ is defined by

[fn]([(rn)] =df [(fn(rn)].

The hyperfinite sum of a hyperfinite function [fn] over a hyperfinite set
[Hn] is a hyperreal number defined by∑

a∈[Hn]
[fn](a) =df [(

∑
a∈Hn
fn(a))].

Let N ∈ N∞, the hyperfinite time line is the hyperfinite set

T = { k
N
: k ∈ Z∗, −N2 � k � N2}.

Let A be the set of all internal subsets of T , i.e. A = {A ⊂ T : A is internal}.
A is an algebra of sets. Let µ be the counting measure on A defined by

µ(A) =
|A|
N
.

A real valued map oµ : A 7→ [0,∞], defined by

oµ(A) =
{
0(µ(A)), if µ(A) is limited
∞, otherwise

is additive and for any sequence of pairwise disjoint sets (An)n∈N ⊂ A holds⋃
n∈N
An ∈ A → oµ(

⋃
n∈N
An) =

∑
n∈N

o
µ(An).
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Theorem There is a unique extension of oµ to the σ-algebra σ(A) genera-
ted by A. The completion of this measure is the Loab measure µL and the
completion of σ(A) is the Loab σ-algebra L(A).
Theorem Let B be the set B = {B ⊂ R : st−1(B) ∈ L(A)}, where
st−1(B) = {t ∈ T : ot ∈ B}. Then a measure λ on B, defined by

λ(B) = µL(st−1(B)),

is the Lebesgue measure.
Corollary For any a, b ∈ R, with a < b,

µL({t ∈ T : a∗ ≺ t ≺ b∗}) =o µ
( |T ∩ (a, b)∗|

N

)
= b− a.
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